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Abstract
We consider N particles interacting pairwise by an inverse square potential
in one dimension (Calogero–Sutherland–Moser model). For a system placed
in a harmonic trap, its classical partition function for the repulsive regime is
recognised in the literature. We start by presenting a concise re-derivation of
this result. The equation of state is then calculated both for the trapped and the
homogeneous gas. Finally, the classical limit of Wu’s distribution function for
fractional exclusion statistics is obtained and we re-derive the classical virial
expansion of the homogeneous gas using this distribution function.

PACS numbers: 03.65.Sq, 05.30.Pr

1. Introduction

We consider a system of identical particles in one dimension interacting via an inverse square
pairwise interaction. This is a class of integrable many-body systems known as the Calogero–
Sutherland–Moser (CSM) model [1, 2] which is a classic example of an exactly solvable
many-body system. For over three decades, the variants of this model have provided a
template for analysing disparate problems in high energy and condensed matter physics.

The Hamiltonian of the model in the presence of a harmonic confinement is given by

H =
N∑

i=1

[
1

2m
p2

i +
1

2
mω2x2

i

]
+

h̄2λ

m

∑
1�i<j�N

1

(xi − xj )2
, (1)

where xi, pi denote the positions and momenta of the N particles, and λ is a dimensionless
coupling constant.

In the absence of a harmonic confinement, the system is classically integrable [2]. Defining
h̄2λ = α2, the integrals of motion are constructed using the Lax matrix defined as

Lij = piδij + (1 − δij )
iα

xi − xj

. (2)
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The integrals of motion are given by

In = tr(Ln), for n = 1, . . . , N. (3)

It is straightforward to show that the integrals of motion are in involution, [In, Im] = 0, and
hence the system is classically integrable.

In this paper we are interested in the classical statistical properties of a system of identical
particles whose dynamical behaviour is described by the Hamiltonian in equation (1). The
quantum dynamics of such particles has been extensively studied [1, 3], and its exact N-particle
quantum canonical partition function is known. By taking its h̄ → 0 limit, the corresponding
classical partition function was derived long ago [4]. More recently, further studies associated
with the classical integrals and related Jacobians have been made [5, 6]. In this paper,
the emphasis is on the thermodynamic properties of this classical system, particularly in
relation to the fractional exclusion statistics (FES) that it obeys in the quantum regime
[3, 7]. In section 2, we give a concise derivation of the classical N-particle canonical partition
function, and the corresponding equation of state for the trapped gas. The harmonically
confined system has a constant density of states, and only the second virial coefficient is found
to be non-zero. But our primary interest is obtaining the virial expansion of the unconfined gas
in the thermodynamic limit. The classical partition function for such a system is divergent.
In section 3, we use the harmonic oscillator confinement as a regulator, and obtain the virial
expansion for the equation of state in the limit of the oscillator frequency going to zero. In
section 4, in the context of FES, we obtain the non-trivial classical distribution function by
taking the appropriate limit of Wu’s quantum occupancy factor for particles obeying fractional
exclusion statistics [7, 8]. Using this, we derive the virial expansion of the homogeneous gas
and confirm the results obtained in section 4. We also find the energy of the classical CSM
model at zero temperature.

2. Classical limit of the quantum canonical partition function ZN

The classical partition function for N identical particles is given by

ZN(β) = 1

N !(2πh̄)N

∫
dNx dNp exp(−βHN), (4)

where the Hamiltonian HN is given by equation (1). We choose the interaction strength
h̄2λ = α2, with α being real. The interaction is therefore always repulsive. Note the explicit
factor of N ! in the above expression for identical particles. While it is rather difficult to obtain
the classical partition function by direct integration for all N, we may approach the problem
as the classical limit of the quantum canonical partition function ZN(β). This was the route
which was originally taken in [4]. We obtain the desired result more directly, however, by
using a property of CSM that relates to FES. To this end, we set the interaction strength
λ = g(g − 1), where g � 0, and recall the known result [9]

ZN = eh̄βω(1−g) N(N−1)

2 ZF
N , (5)

where ZN is for an arbitrary g, and ZF
N is the N-particle non-interacting fermion partition

function (for g = 1). Identical results are obtained when the problem is approached from the
bosonic representation (for g = 0).

We are now in a position to take the classical limit. We define the classical limit as one in
which the parameters m,ω, β, α are held fixed and we take the limit h̄ → 0. Assuming this,
we proceed as follows. Note that we have set

α2 = h̄2λ = h̄2g(g − 1), (6)
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where the classical interaction strength α is independent of h̄. Both α and g are positive
definite and are related by

gh̄ = h̄

2
+

√
α2 + h̄2/4. (7)

Now taking the limit h̄ → 0 while keeping α fixed implies g → ∞ and

gh̄ → α. (8)

This defines the approach to the classical limit. Taking this limit in equation (5) we obtain

lim
h̄→0

ZN = e−αβω N(N−1)

2 lim
h̄→0

[
ZF

N

]
. (9)

The non-interacting fermion partition function is given by the well-known expansion,
namely,

ZF
N = (−1)N

∑
P

∏
l

1

nl!

[
−Z1(lβ)

l

]nl

= 1

N !

[
ZN

1 (β) − N(N − 1)

2
Z1(2β)ZN−2

1 (β) + · · ·
]

, (10)

where the sum over P is given by the number of partitions of N such that
∑N

l=1 nll = N for nl

and l positive integers and

Z1(β) = 1

2 sinh(h̄βω/2)
. (11)

Now, taking the limit h̄ → 0, we obtain the desired result

h̄NZN = e−αβω N(N−1)

2
1

N !(βω)N
. (12)

This is the same result obtained in [4] using a different but longer method.

2.1. Equation of state of the trapped classical gas

We can easily calculate the thermodynamic properties of the trapped gas from ZN(β) given
in equation (12). The free energy is given by FN = −τ ln ZN , where τ = 1/β. Since the
density of states is constant for a harmonic confinement, it is like a two-dimensional gas, and
the pressure is given by

P = −
(

∂FN

∂A

)
τ

, (13)

where A = l2 = h̄/mω, l being the oscillator length. Writing(
∂FN

∂A

)
τ

=
(

∂FN

∂ω

)
τ

(
dω

dA

)
, (14)

and ρ = N/A, we obtain the equation of state

βP = ρ +
α

2

h̄β

m
ρ2, (15)

where P is the pressure. Note that the virial coefficients of order 3 and higher are zero.
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3. Classical equation of state for the homogeneous gas (ω → 0)

We now consider the virial expansion of the unconfined gas in the thermodynamic limit. The
classical partition function for such a system is divergent. However, we use the harmonic
oscillator confinement as a regulator to calculate the partition function as before and obtain
the virial expansion for the equation of state in the limit of the oscillator frequency going to
zero.

In the dilute limit, the equation of state is given by

βP =
∞∑
l=1

blz
l, (16)

where z = eβμ, and bl are the cluster expansion coefficients [10, 11] which appear in the
fugacity expansion as above. They can be expressed in terms of the canonical partition
functions

bl = (Z1)
l−1

∑
{mi }

(−1)(
∑

i mi−1)

(∑
i

mi − 1

)
!
∏

i

[
Zi

Zi
1

]mi 1

mi!
. (17)

Note that a cluster coefficient of order l involves all the partition functions up to Zl. The
summation over mi is constrained by the number of partitions of l, that is

∑l
i=1 imi = l.

Using the expansion for the density in terms of the cluster coefficients, namely,

ρ =
∞∑
l=1

lblz
l, (18)

along with equation (16), the virial expansion coefficients are defined by

βP = ρ

[
1 +

∞∑
n=2

an(λT ρ)n−1

]
, (19)

where λT =
√

2πh̄2β/m is the thermal wavelength. The ak are the virial coefficients of the
system. Note that b1 = a1 = 1.

Consider the limit in which the confinement is removed. We do this by taking the limit
ω → 0 as follows. The cluster coefficients are given by

b2 = lim
ω→0

Z1√
2

[
2Z2

Z2
1

− 1

]
,

(20)

b3 = lim
ω→0

Z2
1√
3

[
3Z3

Z3
1

− 3Z2

Z2
1

+ 1

]
.

Note that the numerical pre-factors in these expressions for the harmonic regularization ω → 0
are different from the box regularization L → ∞. In d dimensions (d = 1 in our case), the
expressions for bn in the simple harmonic regularization must be taken to be larger by a factor
of nd/2, where n is the order of the virial coefficient, than for the box regularization. This
ensures that they give the same result as ω → 0 and L → ∞, respectively [12].

Then the first two virial coefficients are given by

a2 = −b2, a3 = 4b2
2 − 2b3. (21)

For the quantum gas, we find that

b2 = 1√
2

(
1
2 − g

)
,

(22)
b3 =

√
3

2 g(g − 1) + 1
3
√

3
,
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and therefore,

a2 = 1√
2
(g − 1/2),

(23)
a3 = (2 −

√
3)g(g − 1) + 1

2 − 2
3
√

3
.

For g = 0 (1), we recover the virial coefficients for a one-dimensional gas of non-interacting
bosons (fermions). If we take the limit h̄ → 0 and g → ∞ keeping α fixed as before, we get
the virial expansion for the classical gas

βP = ρ

[
1 +

1√
2

√
2πβ

m
αρ + (2 −

√
3)

2πβ

m
α2ρ2 + · · ·

]
. (24)

4. Classical distribution function

An interacting system of particles described by a CSM model may be mapped on to an ideal
gas obeying fractional exclusion statistics (FES) [3, 7]. In this section, we derive the classical
virial expansion of the homogeneous gas from this starting point and confirm that we obtain the
same results as in section 3. It is also shown that the energy per unit length at zero temperature
may be consistently obtained from our classical description by taking the limit h̄ → 0.

The definition of the statistical parameter in FES, denoted by g(>0), is based on the rate
at which the number of available states in a system of fixed size decreases as more and more
particles are added to it. The statistical parameter g assumes the values 0 and 1 for bosons and
fermions respectively, because the addition of one particle reduces the number of available
states by g. The application of the finite temperature distribution function [8] then enables us
to calculate the temperature-dependent quantities of the system.

As is well known, the Haldane–Wu statistics is realized by the CSM model in one
dimension [3], with the statistical parameter g in the FES being identical to the interaction
strength in the CSM model as noted earlier. The potential and kinetic energies scale in the
same way in this model, and both the energy densities scale as ρ3. The distribution function
or average occupancy for FES particles has been derived by Wu [8] and is given by

np = 1

wp + g
, (25)

where p denotes the momentum, and the dispersion relation is given by εp = p2/2m. The
parameter g is called the statistical parameter of FES since the occupancy of a given momentum
state depends on g. It has been shown that the statistical parameter of FES is also the interaction
coupling in the CSM model as used in the previous section. The function wp satisfies the
equation

wg
p(1 + wp)1−g = eβ(εp−μ). (26)

We now ask the question: what is the classical limit of the distribution function or,
equivalently, how do we take the limit g → ∞? Let us assume that

wp = g/γp and e−βμ = g e−βμc , (27)

where γp depends on the momentum p, and μc is a renormalized chemical potential relevant
to the classical limit. They also depend on other variables like temperature and density as will
become clear below.

Using the above, we can write equation (26) in the following form:

wp

[
wp

1 + wp

]g−1

= g eβ(εp−μc). (28)
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If we now take the limit g → ∞ keeping all other variables β, γp, εp, μc fixed, we find that

e−γp

γp

= eβ(εp−μc), (29)

where we have made use of the identity limg→∞(1 − γp/g)g = e−γp . Note that
equation (29) uniquely fixes γp in terms of the momentum p, temperature and the chemical
potential since the function e−γp

γp
monotonically goes from ∞ to 0 as a function of γp for

0 < γp < ∞. Furthermore, using equations (25) and (27) we see that

np = 1

g

γp

1 + γp

, (30)

which is now the analogous classical distribution function for CSM particles.
There is yet another way of obtaining the above result from the grand partition function

corresponding to FES, namely,

ln ZG =
∑

p

ln

(
1 +

1

wp

)
=

∑
p

γp

g
(31)

in the limit g → ∞. We immediately find that

np = − 1

β

∂ ln ZG

∂εp

= 1

g

γp

1 + γp

, (32)

as desired.
We can now obtain the classical limit by setting gh̄ = α. In a system with length L, the

free energy F = −(1/β) ln ZG follows from equation (31):

F = −L

β

∫ ∞

−∞

dp

2πh̄

γp

g
= −L

β

∫ ∞

−∞

dp

2πα
γp. (33)

Since the pressure is given by P = −(∂F/∂L)β , we see that

βP =
∫ ∞

−∞

dp

2πα
γp. (34)

The density (i.e. the number of particles per unit length) is given by

ρ =
∫ ∞

−∞

dp

2πh̄
np =

∫ ∞

−∞

dp

2πα

γp

1 + γp

, (35)

while the energy per unit length is

E =
∫ ∞

−∞

dp

2πα

γp

1 + γp

p2

2m
. (36)

The virial expansion at high temperature can be obtained using equations (29), (34) and
(35) as follows. We find that as β → 0, we must take eβμc → 0 so that e−β(εp−μc) � 1 for all
values of p. Using equation (29), we can expand γp as a power series in e−β(εp−μc). To go up
to the third virial coefficient, we find that

γp = e−β(εp−μc) − e−2β(εp−μc) + 3
2 e−3β(εp−μc) + · · · . (37)

Equation (35) then gives

ρ = 1

α

√
m

2πβ

(
eβμc −

√
2 e2βμc +

3
√

3

2
e3βμc + · · ·

)
. (38)
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This equation can be inverted to give

eβμc =
√

2πβ

m
αρ +

√
2

(√
2πβ

m
αρ

)2

+

(
4 − 3

√
3

2

)(√
2πβ

m
αρ

)3

+ · · · . (39)

Equations (34) and (37) now give

βP = 1

α

√
m

2πβ

(
eβμc − 1√

2
e2βμc +

√
3

2
e3βμc + · · ·

)
. (40)

Substituting equation (39) into (40), we obtain the expression in equation (24).
Finally, let us consider the zero temperature limit. Note that as β → ∞, γp = 0 if

εp > μc, and γp = ∞ if εp < μc; thus, γp/(1 + γp) is 0 or 1 in these two cases. This is very
similar to the Fermi distribution function at zero temperature. Using this fact in equation (25),
we find that there exists a Fermi momentum pF = √

2mμc which is related to the density
through ρ = pF /(πα). Equation (36) then shows that the energy per unit length is given by
E = π2α2ρ3/(6m). Let us now show directly that this is the expected value of the classical
energy at zero temperature. At T = 0, the particles are at rest; hence, the kinetic energy is
zero. The repulsive two-body interactions in equation (1) (where we have taken h̄2λ = α2

as usual and also set ω = 0) will be minimized if the particles are equally spaced on a line,
with the nearest neighbour spacing being equal to 1/ρ. If the particles are ordered such that
xi < xi+1 for all i, we will have xi+n − xi = n/ρ. The interaction energy per particle is then
given by

α2

m

∞∑
n=1

1

(n/ρ)2
= π2α2ρ2

6m
. (41)

Thus, the energy per unit length is given by π2α2ρ3/(6m).

5. Summary

In this paper, we have used the exact solvability of the energy spectrum of the quantum CSM
model for any value of the interaction parameter g to study the classical limit; this limit is
obtained by taking h̄ → 0 and g → ∞ keeping gh̄ = α fixed. Our derivation of ZN(β)

is more concise than previous derivations. We have computed the virial expansions for the
classical CSM model with or without a harmonic confining potential (i.e. for a homogeneous
system). Finally, we have found the classical limit of the Wu distribution function for FES
and used this to show consistency between the virial expansions of the homogeneous CSM
model obtained from ZN(β) and from FES up to the third virial coefficient.

Acknowledgments

We are grateful to Peter Forrester for bringing to our attention some earlier papers which led to
a substantial revision of the original version of this paper. MVN acknowledges the hospitality
of the Indian Institute of Science and McMaster University where parts of this work were done
and RKB acknowledges financial support by the NSERC.

References

[1] Calogero F 1969 J. Math. Phys. 10 2191
Calogero F 1969 J. Math. Phys. 10 2197

7

http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1063/1.1664821


J. Phys. A: Math. Theor. 43 (2010) 045002 R K Bhaduri et al

Sutherland B 1971 J. Math. Phys. 12 246
Sutherland B 1971 J. Math. Phys. 12 251
Sutherland B 1971 Phys. Rev. A 4 2019

[2] For a review of recent developments see, Polychronakos A P 2006 J. Phys. A: Math. Gen. 39 12793
[3] Ha Z N C 1994 Phys. Rev. Lett. 73 1574

Isakov S B 1994 Phys. Rev. Lett. 73 2150
Murthy M V N and Shankar R 1994 Phys. Rev. Lett. 73 3331

[4] Gallavotti G and Marchioro C 1973 J. Math. Anal. Appl. 44 661
[5] Forrester P J 1992 J. Phys. A: Math. Gen. 25 L607
[6] Aomoto K and Forrester P J 2000 Compositio Mathematica 121 263
[7] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[8] Ramanathan R 1992 Phys. Rev. D 45 4706

Dasnieres de Veigy A and Ouvry S 1994 Phys. Rev. Lett. 72 600
Isakov S B 1994 Mod. Phys. Lett. B 8 319
Wu Y-S 1994 Phys. Rev. Lett. 73 922
Rajagopal A K 1995 Phys. Rev. Lett. 74 1048

[9] Bhaduri R K, Murthy M V N and Tran M B 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2817
[10] Pathria R K 1972 Statistical Mechanics (Oxford: Pergamon) p 269
[11] Beth E and Uhlenbeck G E 1937 Physics IV 915
[12] McCabe J and Ouvry S 1991 Phys. Lett. B 260 113

8

http://dx.doi.org/10.1063/1.1665584
http://dx.doi.org/10.1063/1.1665585
http://dx.doi.org/10.1103/PhysRevA.4.2019
http://dx.doi.org/10.1088/0305-4470/39/41/S07
http://dx.doi.org/10.1103/PhysRevLett.73.1574
http://dx.doi.org/10.1103/PhysRevLett.73.2150
http://dx.doi.org/10.1103/PhysRevLett.73.3331
http://dx.doi.org/10.1016/0022-247X(73)90008-5
http://dx.doi.org/10.1088/0305-4470/25/10/001
http://dx.doi.org/10.1023/A:1001774431216
http://dx.doi.org/10.1103/PhysRevLett.67.937
http://dx.doi.org/10.1103/PhysRevD.45.4706
http://dx.doi.org/10.1103/PhysRevLett.72.600
http://dx.doi.org/10.1142/S0217984994000327
http://dx.doi.org/10.1103/PhysRevLett.73.922
http://dx.doi.org/10.1103/PhysRevLett.74.1048
http://dx.doi.org/10.1088/0953-4075/35/12/316
http://dx.doi.org/10.1016/0370-2693(91)90977-X

	1. Introduction
	2. Classical limit of the quantum canonical partition function ZN
	2.1. Equation of state of the trapped classical gas

	3. Classical equation of state for the homogeneous gas (o r 0)
	4. Classical distribution function
	5. Summary
	Acknowledgments
	References

